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We study the out-of-equilibrium current through an interacting quantum dot, which is modeled as an Ander-
son impurity contacted by two BCS superconductors held at fixed voltage bias. In order to account for multiple
Andreev reflections, we develop a Keldysh Green’s function scheme perturbative in the dot’s interaction
strength. We find an unexpected enhancement of the current due to repulsive interactions for small to inter-
mediate lead-to-dot couplings.
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I. INTRODUCTION

Superconducting transport through low-dimensional
nanoscale structures is currently attracting considerable inter-
est. Gate-tunable Josephson currents through nanowire-based
quantum dots have been reported,1 and similar setups have
been realized using �short� carbon nanotubes2,3 and metallo-
fullerene molecules.4 Nonequilibrium transport in such sys-
tems contacted by superconducting electrodes has been a
particular focus of recent experimental effort,3–9 which is
mainly caused by an interesting interplay between interaction
effects �on the quantum dot� and superconducting correla-
tions �due to the electrodes�. One remarkable consequence is
the observation of an “even-odd” effect �as a function of the
dot’s occupation number� in the conductance.8,9 This effect is
presumably caused by the absence or presence of Kondo
correlations. In this paper, we analyze superconducting trans-
port through an interacting quantum dot for the simplest case
of a single spin-degenerate level with repulsive on-site inter-
action energy U�0 �Anderson impurity�, which is contacted
by two wide s-wave BCS superconducting electrodes with
identical gap �. For simplicity, we assume that both lead-to-
dot couplings �hybridizations� are equal, i.e., �L=�R=�, and
consider the two electrodes held at potential difference �volt-
age bias� V. By a systematic perturbative expansion in the
interaction strength U, we compute the I-V characteristics, in
particular, for the interesting subgap regime eV�2�, where
multiple Andreev reflection �MAR� processes provide the
dominant transport mechanism. A theory of coherent MAR
has been originally developed for superconducting point
contacts,10 with the essential assumption that charging inter-
action effects inside the contact can be neglected. The prob-
lem of resonant MAR through a noninteracting quantum
level has been treated in Refs. 11–13.

While the interacting problem in equilibrium has been
theoretically studied by many authors,14 the corresponding
nonequilibrium problem is more difficult and far less under-
stood. Previous approaches can be broadly grouped in three
classes. �i� By ignoring MAR processes in the Coulomb
blockade regime, additional side peaks in the differential
conductance at eV=2� and 2��+U� were predicted,15 which
reflects the singularity of the BCS spectral density of the
leads. �ii� Different mean-field schemes have been pro-
posed,12,16,17 which are based on slave-boson or Hubbard–
Stratonovich-path-integral approaches. These calculations

predict an overall suppression of the current by the interac-
tions. This suppression is obtained only for sufficiently re-
pulsive interactions, while there is no interaction effect for
weak interaction.16 �iii� A Fermi liquid approach valid in the
deep Kondo limit has been proposed.18 Here, we do not dis-
cuss the Kondo regime but instead focus on the limit of weak
interactions, U /��1, where a controlled perturbative expan-
sion in the small parameter U /� is possible. Note that this
approach still allows for arbitrary ratio � /�. Such calcula-
tions have been carried out for normal-conducting ��=0�
electrodes recently,19–21 and we here generalize them to su-
perconducting electrodes. The case U�� is of experimental
relevance for the understanding of superconducting transport
through quantum dots or molecules with good lead-to-dot
couplings.

The structure of the remainder of this paper is as follows.
In Sec. II, we discuss our perturbation theory approach to
superconducting transport through an Anderson dot and its
numerical implementation. Results for the current-voltage
characteristics are shown and discussed in Sec. III. The ap-
pendix contains qualitative arguments for the current en-
hancement found at ���, which is based on an evaluation
of the Josephson current. We often set �=e=1.

II. PERTURBATIVE APPROACH TO SUPERCONDUCTING
TRANSPORT

We consider the canonical Anderson impurity model, H
=HD+HT+HL+HR, where a single-level dot with spinful fer-
mion d� �HD� is tunnel coupled �HT� to left and right super-
conducting reservoirs HL/R held at chemical potential differ-
ence eV. The isolated dot corresponds to �n�=d�

†d�=0,1�

HD = E0�n↑ + n↓� + Un↑n↓ = 	0�n↑ + n↓� −
U

2
�n↑ − n↓�2.

�1�

The “noninteracting” model below is taken to contain the
interaction level shift 	0=E0+U /2 of the bare level E0. The
leads are described by a pair of s-wave BCS Hamiltonians in
the standard wide-band limit. We are interested in the V�0
case and take the same real-valued gap parameter ��0 for
both electrodes. By using the Nambu vector 
 j,k

T

= �� j,k,↑ ,� j,−k,↓
† � for electrons in lead j=L /R, we thus have

�we set �=e=1 in intermediate steps�

PHYSICAL REVIEW B 77, 104525 �2008�

1098-0121/2008/77�10�/104525�6� ©2008 The American Physical Society104525-1

http://dx.doi.org/10.1103/PhysRevB.77.104525


Hj = �
k


 jk
† ��k2/2m − 	F��z + ��x�
 jk, �2�

with Pauli matrices �i ��i� in Nambu �Keldysh� space. By
using the Nambu vector d= �d↑ ,d↓

†�T and �=�0�t0�2 for �nor-
mal� lead density of states �0, the lead-dot coupling is

HT = t0 �
k,j=L/R=�


 jk
† �ze

�i�zVt/2d + H.c., �3�

where the voltage V enters via the time-dependent phase. We
now define the Keldysh–Nambu Green’s function for the dot
fermions as

G���
ss� �t,t�� = − i�T̂C�d��ts�d��

† �ts���� , �4�

where � ,��=1,2 �s ,s�=1,2� are Nambu �Keldysh� indices

and T̂C is the time-ordering operator along the Keldysh con-
tour. Accordingly, ts denotes a time taken on branch s of the
Keldysh contour. It is convenient to use the Fourier decom-
position as22

Gab�t,t�� = �
n,m=−�

� 	
F

d�

2
e−i�nt+i�mt�Gnm

ab ��� , �5�

where a ,b=1, . . . ,4 denotes the Nambu–Keldysh indices de-
fined by a=�+2�s−1� and �n=�+nV for � within the “fun-
damental” domain F
�−V /2,V /2�. For fixed ��F, the

Dyson equation for the full Green’s function Ǧ �the inverted
caret refers to the Keldysh–Nambu structure�,

Ǧ−1 = Ǧ0
−1 − �̌ , �6�

then becomes a matrix equation suitable for numerical inver-
sion. Here, interaction effects are encoded in the self-energy

�̌. After integrating out the lead fermion degrees of freedom,

the noninteracting Green’s function Ǧ0 is

Ǧ0,nm
−1 ��� = ��n − 	0�z��z�nm − � �

j=L/R
�̌ j,nm��� . �7�

The self-energy due to tracing out the respective lead is
given by the Nambu matrix as

�̌ j=L/R=�,nm���

= � �nmX̌��n � V/2� �m,n�1Y̌��n � V/2�

�m,n�1Y̌��n � V/2� �nmX̌��n � V/2�
� , �8�

with Keldysh matrices Y̌���=−�X̌��� /� and

X̌��� =−
�

��2 − �2
�z, ��� � �

i���
��2 − �2�2f� − 1 − 2f�

2f−� 2f� − 1
� , ��� � �� ,

where f�=1 / �1+e�/kBT� is the Fermi function. The steady-
state dc current through the left and/or right junction then
follows as

IL/R = � 2� Re �
nm
	

F

d�

2
tr��z�̌L/R,nm���Ǧmn����+−, �9�

where the trace is only over the Nambu space and �+−� refers
to the �12� Keldysh component. Current conservation, IL
= IR= I, is fulfilled for all results below.

A. First order

Since the exact self-energy �̌ is not known, we proceed in
a perturbative fashion, starting with the first-order self-
energy in Fig. 1�a�, which is made self-consistent by using

the full Ǧ in the diagram. It is convenient to introduce the
four-point vertex �cf. also Ref. 19�,

�abcd =
1

2
��ab�cd + �cd�ab − �ad�cb − �cb�ad� , �10�

where �=�0�z=diag�1,1 ,−1 ,−1�. Only eight out of the pos-
sible 256 entries of the tensor � are nonzero, with values
�1. With this convention, the complete first-order self-
energy is given by

�n,n+m
�1�ab = iU�abcd�

n�
	

F

d��

2
Gn�,n�+m

dc ���� , �11�

where we use the sum convention for c and d. Note that this
self-energy is independent of �n ,�� but still depends on the
“off-diagonal” frequency index m. In time representation,
m�0 contributions come with phase factors e�2imVt and thus
correspond to anomalous �pairing� correlations. The presence
of the off-diagonal harmonics in the self-energy is a conse-
quence of the coherent MAR transport regime considered
here. The role of coherence is particularly important for the
interplay between MAR processes and charging effects in a
quantum dot with a relatively strong coupling to the leads.

At that stage, let us briefly compare the first-order self-
consistent approach based on Eqs. �6� and �11� to the mean-
field approximation of Ref. 16. The latter effectively consid-
ers only the time averaged components of the self-energy
�Eq. �11�� corresponding to the two first terms of Eq. �10�,
thereby discarding all harmonics with m�0 and exchange
terms in Eq. �11�. The resulting self-energy contributions,
which are taken into account in Ref. 16, correspond to �+�0
and �−�z. The scalar constants �� can be written as

�+ = i
U

2 �
n�
	

F

d��

2
Tr��zǦn�n������ ,

(a) (b)

FIG. 1. Electron-electron interaction self-energy diagrams taken
into account in this paper: �a� first order �left� and �b� second order
�right�.
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�− = i
U

2 �
n�
	

F

d��

2
Tr�Ǧn�n������ , �12�

where the trace is over both the Nambu and Keldysh spaces.
Under this approximation, there is no interaction effect on
the current I�V� below some critical value Uc. In fact, non-
trivial stable solutions ���0 for the self-consistency equa-
tion �Eq. �12�� exist only for U�Uc,

16 where Uc depends on
V, �, and �. The symmetry-broken phase with �−�0 corre-
sponds to a spin-polarized dot, and one then finds a Coulomb
blockade suppression of the current.16 However, for normal
leads, serious problems with spin-polarized out-of-
equilibrium mean-field solutions for the Anderson dot have
been recently identified,23 and those arguments also apply to
the superconducting case. A typical value is Uc�� for V
���� /2, and we shall always limit ourselves to U�Uc
where no such problems arise. In our calculations, the actual
value of Uc follows from the numerical solution of the self-
consistency problem, and we can thereby ensure that no
spin-polarized solutions are present. In contrast to the mean-
field scheme of Ref. 16, however, the full first-order self-
consistent approach generates sizeable interaction correc-
tions even for small U �see Sec. III�. These corrections are
not just a matter of numerical accuracy but reflect the impor-
tance of on-dot pairing terms.

B. Second order

To go beyond the self-consistent first-order approximation
given by Eq. �11�, we have to evaluate the second-order dia-
gram, as shown in Fig. 1�b�. Due to the large numerical
effort in evaluating this diagram, we restrict ourselves to a
non-self-consistent scheme at this point, i.e., we use the so-

lution Ǧ of the first-order problem to evaluate �̌�2�. As is well
known,24,25 under such a scheme, current conservation is
only ensured for the particle-hole symmetric case, i.e., 	0
=0 �see also Ref. 22�. We therefore show second-order re-
sults only for 	0=0. The second-order Nambu–Keldysh self-
energy in time representation reads �sum convention�

��2�ab�t,t�� =
U2

2
�afgh�ebcdGfe�t,t��Gdg�t�,t�Ghc�t,t�� .

�13�

To avoid numerically expensive frequency convolutions, it is
convenient to first compute the Green’s function in time rep-
resentation according to Eq. �5�, then evaluate the self-
energy in Eq. �13�, and finally, transform this result back to
frequency space to use it in the Dyson equation �Eq. �6��.
Notice that Eq. �13�, which corresponds to the skeleton dia-
gram in Fig. 1�b�, represents only a part of all possible
second-order contributions. The rest is given by the time-
local piece,

− U2�abcd�efgh	 dt�Gde�t,t��Ghg�t�,t��Gfc�t�,t� ,

which has already been taken into account by our self-
consistent first-order solution.

C. Calculation of current

The numerical implementation of the above perturbative
approach is straightforward. To evaluate the current I�V�
from Eq. �9�, we partition the frequency summations into
windows of width V and impose a bandwidth cutoff �c, such
that ��n���c. In our calculations, we use �c=10�, but the
precise choice is not critical. We then discretize the funda-
mental frequency domain F with a step size �� and use a
fast Fourier transform routine to switch between time and
frequency representations. �The efficient evaluation of the
second-order self-energy requires to employ the time repre-
sentation, while the Dyson equation needs the frequency rep-
resentation.� Typically, we found ��=0.005� to be sufficient
for convergence. The matrix inversion in Eq. �6� is then
separately performed for each ��F involving matrix dimen-
sions of the order of �c / �V�. We refer to Ref. 22 for further
details of the numerical implementation in the related case of
a phonon-mediated interaction.

In a first step, we solve the first-order self-consistent prob-
lem posed by Eqs. �6�, �7�, and �11�. This solution proceeds
iteratively, where the stability or instability of the solution

for Ǧ is carefully checked by probing small deviations
around it. The iterative solution can, in fact, be carried out
with very modest computational effort and quickly converges
to a unique solution �as long as U�Uc�. In a second step, we
then use this converged first-order Green’s function to evalu-

ate �̌�2� according to Eq. �13� and to finally compute the
current from Eq. �9�. The second-order calculation is quite
time consuming for low bias voltage, where many MAR or-
ders need to be taken into account, and we therefore re-
stricted our calculations to eV /��0.2. As a consistency
check for our numerical code, we have reproduced known
results for U=0 �see Refs. 11–13� and the corresponding
perturbative-in-U results for normal-conducting leads ��
=0� �see Refs. 19 and 20�. We have also reproduced the
respective results of Ref. 16 when implementing their ap-
proximations. As an additional check, the Green’s function

sum rules, such as tr��z�zǦ�t , t��=0 at coinciding times, have
been verified.

III. RESULTS AND DISCUSSION

Next, we discuss numerical results obtained under the per-
turbative approach, as described in Sec. II. All results are for
T=0, and unless noted otherwise, we set U /�=0.5 which is
sufficiently small to ensure U�Uc for all investigated V /�
and � /� but large enough to produce significant interaction
corrections to the I-V characteristics. We will focus on the
most interesting subgap regime, i.e., eV�2�. The excess
current Iexc=limV→��I�V ,��− I�V ,�=0�� has also been com-
puted. The interaction contribution �Iexc to this quantity turns
out to be generally small, which is similar to what is found
for the case of phonon-mediated interactions.22 Remarkably,
this interaction correction is positive for ���, which points
toward a current enhancement. This trend is quite generic
and discussed next.

Let us start by showing results obtained from the first-
order self-consistent scheme �i.e., without the second-order
self-energy�. In that case, by virtue of self-consistency, we
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have the freedom to vary 	0 without spoiling current
conservation.24,25 Representative numerical results for the
voltage-dependent interaction correction to the current,
I�U�− I�U=0�, are shown for � /�=0.5 in Fig. 2. For all
results shown here, we have U�Uc, and the approach of
Ref. 16 would not yield any interaction correction. However,
we find significant interaction effects for U�Uc within the
full first-order self-consistent approach. These effects are due
to the time-dependent �m�0� parts of the self-energy �Eq.
�11��, which contain pairing order parameters on the dot. For
instance, at the symmetric point 	0=0, we find by perturba-
tion theory in U that ��=0, but the complex-valued m=1
pairing term

� 
 �n,n+1
�1�,12 �14�

stays finite. This �-independent off-diagonal Nambu compo-
nent of the self-energy, which is absent in the normal ��
=0� case, describes the effect of interactions on the
proximity-induced pairing correlation on the dot. At the
mean-field level, �− is dominant for large U, while terms
such as � dominate for small U. Similar contributions with
�m��1 exist and are kept in our self-consistent first-order
calculations, but they turn out to be significantly smaller.

Quite remarkably, we find I�U�� I�U=0� for most volt-
ages and/or dot level energies 	0, which point to an enhance-
ment of the MAR-mediated current by repulsive interactions.
We have persistently found this unexpected feature through-
out the parameter regime ��� and also when including the
second-order self-energy �see below�. A similar �but weaker�
enhancement can be analytically found for the critical Jo-
sephson current of this system in equilibrium �see the Ap-
pendix�. The current enhancement is reminiscent yet differ-
ent from the “antiblockade” behavior due to dynamical
Coulomb blockade effects on MAR transport, as discussed in
Ref. 26. It is also consistent with the crossover from current
enhancement to decrease with growing � for phonon-
mediated interactions and normal-conducting leads.21

To illustrate the role of the second-order contribution for
U /�=0.5, we now focus on the symmetric case 	0=0 by first

taking again � /�=0.5. The results of the first- and second-
order calculations are compared in Fig. 3. Notice that the
second-order correction, which is the leading time-nonlocal
term in the perturbative expansion, becomes more and more
important when lowering the voltage. In agreement with the
conclusion drawn from the first-order self-consistent calcula-
tion, as shown in Fig. 2, a clear enhancement of the current
by interactions can be observed for a broad range of volt-
ages. This enhancement is especially pronounced for volt-
ages slightly below the odd MAR peaks located at eV
=2� / �2n+1�. As indicated by our results for larger � �see
Fig. 4 for the case � /�=2�, the interaction-induced enhance-
ment of the current is restricted to small � /�. For larger
� /�, the current instead is weakly suppressed by interac-
tions. The same pronounced MAR peak structure, as in Fig.
3, can be observed in the pair order parameter � defined in
Eq. �14�, whose absolute value is shown in Fig. 5. The fact
that the characteristic MAR features still appear at eV
=2� /n for the interacting case indicates that, at least for
small U, the number of Andreev reflections is not affected by
the Coulomb interaction. This is in contrast to the inelastic
MAR picture for phonon-mediated interactions, as discussed
in Ref. 22. Moreover, our results indicate that the Andreev
quasiresonances11,13 are not shifted away from the gap sub-
harmonics.
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FIG. 2. Interaction correction to the current �currents are always
plotted in units of e� /h� from the self-consistent first-order ap-
proach for U /�=� /�=0.5 and various 	0 /�. The inverse voltage
scale is taken to compare with standard MAR features. Inset: Full
I-V curves for same parameters.
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FIG. 3. Same as Fig. 2 but for 	0=0. The dashed curve gives the
first-order self-consistent result, while the solid curve includes also
the second-order contribution.
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FIG. 4. Same as Fig. 3 but for �=2�. Inset: I-V curve from
second-order perturbation theory and for U=0.
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As follows from our numerical analysis, the magnitude of
the difference current is mainly determined by the first har-
monics of interaction-mediated pairing �Eq. �14�� and can be
roughly approximated as

I�U� − I�0� � �e/������/� . �15�

This can be seen, for instance, from a comparison of the
curves in Figs. 5 and 2 �for 	0=0�. A similar expression for
the difference current �Eq. �15�� is also obtained from a
simple Fermi golden rule calculation by analyzing the dy-
namics of Andreev �subgap� states at very low voltages,
eV��. The corresponding correction to the transition rate
from Andreev states into the continuum is determined by the
imaginary part of the Andreev state self-energy �A���
=���2−�2 /�, while the total escape probability leading to
the difference current is given by an expression similar to
Eq. �3� in Ref. 18.

The above results also suggest that as a function of the
ratio � /�, there should be a crossover from enhancement to
suppression of the current around � /��1. This is what we
get when fixing the voltage and changing � /�. In Fig. 6, we
have chosen V=0.6�, where the self-consistent first-order
approximation gives the main contribution, and plotted
I�U�− I�0� either for fixed U /�=0.5 �solid line� or for fixed

U /�=0.25 �dashed line�. The two curves both cross zero
approximately at the same value, ���.

In conclusion, we have presented a theory which explores
the effect of weak interactions on superconducting transport
through a quantum dot. By employing second-order pertur-
bation theory, which is valid for U��, we find an unex-
pected enhancement of the subgap current against its nonin-
teracting value when the hybridization � is smaller than the
BCS gap parameter �. The perturbation theory scheme that
is pursued in this paper offers controlled results in one corner
of the parameter regime, and in contrast to previous mean-
field theories, we predict significant interaction corrections
even for weak interactions.
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APPENDIX: JOSEPHSON CURRENT

In this appendix, we briefly show that the interaction-
induced current enhancement found in the I-V curves for �
��, as discussed in Sec. III, also appears in the equilibrium
Josephson current-phase relation �where � is the phase dif-
ference across the dot� for the same model. We consider the
corresponding first-order self-consistent theory in equilib-
rium, for simplicity, at 	0=0 only. For small U, no polariza-
tion is present, �=0, and only the proximity-induced mean-
field parameter �=U�d↑

†d↓
†� gives an effect. Assuming real-

valued �, the T=0 self-consistency equation reads

� = U	
−�

� d�

2

�� − �

��
2 + ��� − ��2 , �A1�

where

�� = ��1 +
�

��2 + �2�, �� =
�� cos��/2�

��2 + �2
.

The Josephson current is then given as

I =
e��

�
sin��/2�	

−�

� d�

��2 + �2

�� − �

��
2 + ��� − ��2 . �A2�

The presence of � in Eq. �A2� generally causes two counter-
acting effects: There is a decrease in I due to the numerator
but an increase due to the appearance of � in the denomina-
tor. Which of these is more important can only be clarified by
detailed calculation. We present analytical evaluations valid
for ������cos�� /2�� separately for the regimes � /��1 and
� /��1.

Let us first discuss � /��1, where Eq. �A1� yields

�

U
�

�

2�� cos��/2� − ��

��2� cos��/2�cos−1�� cos��/2� − �

�
�

��2 − �� cos��/2� − ��2
−

�

�
� .

�A3�

0
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0.025
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|δ
|
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FIG. 5. Absolute value of � �see Eq. �14�� in units of � for the
parameters in Fig. 3.
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FIG. 6. I�U�-I�0� vs � /� at V=0.6�, 	0=0, fixing U /�=0.5
�solid line� or U /�=0.25 �dashed line� from self-consistent first-
order perturbation theory.
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The interaction correction to the Josephson current now fol-
lows from Eq. �A2�,

�I �
2e�

�
tan��/2��1

2
f1���sgn cos��/2� −

�

U
� .

with

f1��� =
1 + 2��/���cos��/2��

�1 + ��/���cos��/2���2 = 1 + O��2/�2� .

In the extreme limit � /�→0, Eq. �A3� yields �
= �U /2�sgn cos�� /2�, and then, �I=0. An inspection of Eq.
�A3� for finite � /��1 shows, however, that ����U /2 for
��. As a result, the interaction current to the Josephson
current for ��� turns out to be positive, although it is
numerically small. Using Eq. �A3�, we find

�I �
eU

�

�

�
sin��/2�sgn cos��/2� .

We believe that this effect is related to the enhancement of

the current at finite bias V in the regime ���, as discussed
in Sec. III.

On the other hand, for ���, Eq. �A1� is solved by �
�U� ln�� /��cos�� /2� / ���, and the lowest-order interac-
tion correction to the Josephson current is

�I �
2e�

�
tan��/2�� �

2�
f2���sgn cos��/2� −

�

U
� ,

with f2���=1+cos2�� /2� /4. Due to the large ln�� /�� factor
appearing now in �, the Josephson current will, in general, be
decreased by interactions for ���.

We therefore find the same qualitative picture as for the
nonequilibrium current in Sec. III: The equilibrium Joseph-
son current can also be slightly increased by weak repulsive
interactions for weak hybridization, � /��1, but is de-
creased in the opposite limit. However, the increase in the
Josephson current for weak hybridization turns out to be
much smaller than for the corresponding nonequilibrium cur-
rent.
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